
s

PHYSICAL REVIEW E JUNE 1997VOLUME 55, NUMBER 6
Propagation of plane waves and of waveguide modes in quasiperiodic dielectric heterostructure

R. Pelster,* V. Gasparian,† and G. Nimtz
II. Physikalisches Institut der Universita¨t zu Köln, Zülpicher Straße 77, 50676 Ko¨ln, Germany

~Received 19 December 1996!

We study the propagation of electromagnetic waves in one-dimensional quasiperiodic systems and its dis-
persion relation for plane waves and for waveguide structures. In the photonic band gaps, periodic, Fibonacci,
and Thue-Morse multilayer systems can be described by a complex effective wave vector. Its negative imagi-
nary part causes an exponential decay of the transmission coefficient due to a distributed quasitotal reflection.
Its real part is independent of frequency, so that the phase time becomes independent of the system size. This
time alternates between two distinct values and approximately equals the Bu¨ttiker-Landauer tunneling time.
Superluminal group velocities are obtained for the propagation of narrow frequency band wave packets. The
effective complex wave vector results from multiple reflections of oscillating propagating waves. For both the
plane wave and the waveguide dispersion the most ordered structures exhibit the most effective coherent
interference and thus the deepest gaps in the transmission spectra as well as the smallest decay length. The
Thue-Morse sequence is less ordered than the Fibonacci one, which in turn is less ordered than the periodic
system. Increasing disorder enhances the phase time, the Bu¨ttiker-Landauer time, and the density of states in
the gap regions. The group velocity becomes smaller, but still remains superluminal. The spectra ofl/4
systems are similar for both the plane-wave and the waveguide dispersion. The Fibonacci scaling relation has
been checked. It holds for a periodicity of 6, whereas the claimed periodicity of 3 has found to be not valid in
general.@S1063-651X~97!00506-0#

PACS number~s!: 42.70.Qs, 41.20.Jb, 42.25.Hz, 71.55.Jv
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I. INTRODUCTION

A lot of work has been carried out to study energy spec
of quasiparticles@1–5#, thermodynamic properties@6,7#, and
electronic and electromagnetic wave propagation@8,9# in
one-dimensional quasiperiodic systems, e.g., in chains of
building blocks alternating according to a Fibonacci or
Thue-Morse sequence. In this intermediate regime betw
order and disorder also ‘‘band gaps’’ occur in the transm
sion spectra analogous to periodic electronic structures.
absence of propagating modes is caused by coherent mu
scattering and interference of partial waves, i.e., it occurs
a scale of the wavelength. While infinite periodic syste
exhibit complete photonic band gaps, positional disorder c
ates pseudogaps of localized states@10#. These are modified
in the intermediate quasiperiodic regime. For example,
scaling properties of self-similar quasiperiodic Fibona
spectra have been interpreted as a sign for quasilocaliza
@8,9#, i.e., the decay of the wave functions is less than ex
nential. Until now, as far as we know, mainly plane wav
have been considered. This case corresponds, for examp
a light beam propagating through a dielectric multilayer s
tem. Another experimental realization might be a TE mo
in a material-filled coaxial cable.

In telecommunication engineering waveguide structu
are important, e.g., for the transmission of microwave sign
or for optical signals between integrated microchips on w
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fers. Due to the boundary conditions, the propagation of
guided wave is altered compared with a plane wave. T
dispersion relation of the wave vector changes and thus
the frequency spectra of the complex transmission and
flection coefficients. In this work we study the consequen
for Thue-Morse, Fibonacci, and periodic systems. From
complex transmission coefficient quantities such as de
length, phase time, Bu¨ttiker-Landauer tunneling time, den
sity of states, and group velocity are calculated, all of wh
reflect the degree of order of the respective system. In
gap regions the interaction time of a wave with the poten
barrier is of special interest. We discuss the question of h
much time tunneling takes and the superluminal bar
traverse involved.

II. CALCULATION OF THE TRANSMISSION SPECTRA

In a rectangularH10 waveguide filled with a materia
~complex permittivity« and permeabilitym) propagates a
TE mode with wave number

k5
v

c
A«m2~nc /n!2 ~1!

~for complexk the convention Im@k#<0 determines the sign
of the square root!. The dispersion relation differs from tha
of a plane wave~TEM mode! by a nonvanishing cutoff fre-
quencync . For anX-band waveguide~width w522.86 mm,
heighth510.16 mm! nc5c/2w56.56 GHz.

Consider a dielectric layer of thicknessd and wave im-
pedance@11# Zm5Z0mk0 /k (Z0 and k0 denote the wave
impedance and wave number of the vacuum, respective!.
In the case of normal incidence the complex reflection co
ficient of a single interface is@11#
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r5
Zm2Z0
Zm1Z0

5
mk0 /k21

mk0 /k11
. ~2!

Taking into account multiple reflections inside the layer,
transmission coefficients for the respective direction
propagation (2←1 or 1←2) are@11,12#

S215S125
~12r 2!a

12a2r 2
~3!

and the corresponding reflection coefficients

S115S225
~12a2!r

12a2r 2
, ~4!

wherea is defined as

a5exp~2 ikd!. ~5!

Thus the same functional relationshipSi j (k,k0) holds for the
S parameters for both the plane wave and the wavegu
case.

In order to obtain theS parameters of a multilayer system
the transmission matrices of the individual layers have to
calculated@13#:

T i5S 2S11S22/S211S12 S11/S21

2S22/S21 1/S21
D . ~6!

The transmission matrix of the whole system is obtained
multiplying the individual layer matrices

Tsys5)
i
T i

according to a chosen sequence. In the followingt and w
denote the amplitude and phase of the transmission co
cient of the system:

S21
sys51/T22

sys5texp~2 iw!. ~7!

We are going to compare three sequences consisting of
building blocks with transmission matricesTa andTb : The
periodic sequence

T2i5T2i21•Ta , T2i115T2i•Tb ~T05Ta!,

the quasiperiodic Fibonacci sequence

T i115T i•T i21 ~T05Tb , T15Ta!, ~8!

and the quasiperiodic Thue-Morse sequence

T i115T i•T i* ~T05Ta•Tb!

~with T i* being the complement ofT i , i.e., having inter-
changed building blocksA and B). As a test we compare
calculated and measured waveguide spectra of the Fibon
elementF5, i.e.,ABAABABA, in Fig. 1. MaterialA was a
Plexiglas layer (da55.9 mm,«a52.6), whereas layerB was
air (db59.5 mm,«51). We have measured the transmissi
f

e

e

y

fi-

o

cci

coefficient of the waveguide using a Hewlett Packard 851
network analyzer and a Through-Reflect-Line calibrati
@14#.

For coherent multiple scattering and thus for strong q
siperiodicity the effective lengths of both layers should be
multiple of a quarter wavelength@9#, i.e.,

daA«ama2~nc /n!25dbA«bmb2~nc /n!25
l

4
~2n11!

~9!

(nc50 for plane waves!, i.e., both layers have the sam
phase lengthkd. Thus the center frequency of a transmissi
spectrum is

ncenter5
1

A«ama

AS ~2n11!c

4da
D 21nc

2 ~10!

and its corresponding frequency period
@ncenter2n/(2n11) ,ncenter(2n12)/(2n11)#. In order to
compare the plane-wave and the waveguide spectra, the
terial parameters« andm, the layer thickness, and the fre
quency range have to be chosen with respect to the follow
points: ~a! The calculation of transmission matrices is on
possible above the cutoff frequency of the feeding wa
guide, i.e., in our case the emptyX-band waveguide with
nc56.56 GHz, and~b! the frequency period of the spectr
should not be too large since the transmission spectra

FIG. 1. Amplitude and phase of the transmission coefficient
frequency for the Fibonacci elementF5 in an X-band waveguide
~layer A: Plexiglas,da55.9 mm, «a52.6; layer B: air,db59.5
mm!. Solid lines, experiment; dashed lines, calculation.
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FIG. 2. Transmission coefficient vs frequency for the plane-wave dispersion:~a! periodic elementP50 (L50.76 m!, ~b! Fibonacci
elementF9 (L50.76 m!, and~c! Thue-Morse element TM5 (L50.96 m!. At the center frequency Eq.~9! holds.
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the
plane waves and waveguide modes differ mainly nearnc and
become similar at higher frequencies@see Eq.~1!#.

III. RESULTS

A. Spectra and decay lengths

For the following calculations layerTa is supposed to be
a nonmagnetic (ma51) loss-free dielectric material an
layerTb corresponds to air («b5mb51). First we choose

da510 mm, «a542 i0, db520 mm.

These are 3/4-wavelength layers for a plane wave (nc50)
with a center frequency of 11.242 GHz@Eq. ~10! with
n51# and a period of 7.495–14.989 GHz. Of course, arra
ing the same layers in a waveguide does not yield a qua
wavelength system@see Eq.~9! with nc56.56 GHz# and we
can expect deviations in the spectra.~We assume that als
above 12.4 GHz only the dominantH10 mode propagates in
the waveguide. This implies a perfect geometry of t
multilayer system to avoid the excitation of higher modes!

Figure 2 shows the transmission coefficient of the pla
wave dispersion for elements of different sequences ha
comparable lengths: the periodic elementT50

p ~51 elements,
L50.76 m!, the Fibonacci elementT9

F ~55 layers,L50.76
m! and the Thue-Morse elementT5

TM ~64 layers,L50.96 m!.
Figure 3 displays the spectra of the same systems (da510
mm, «a54, anddb520 mm! for the waveguide dispersion
Due to the altered dispersion relation and since the qua
wavelength condition~9! does not hold, the waveguide spe
tra lose their symmetry. The gaps become deeper and a
-
r-

e

-
g

r-

di-

tional ones appear. This can be understood easily. Le
consider the most simple spectrum, the periodic one. In
case of lossless material and plane waves the reflection
efficient of a single interfacer is independent of frequenc
@see Eq.~2!# and minima in the transmission coefficient of
single layer@Eq. ~3!# only appear for exp(22kd)51, i.e.,
the quarter-wavelength condition~9! with n51. Thus the
gap appears at the center frequency@Eq. ~10! and Fig. 2~a!#.
For the waveguide dispersion relation the peak posit
changes since Eq.~9! yields 11.7 GHz for layerA and 13
GHz for layerB. In fact, the main gap appears near the me
value 12.35 GHz@see Fig. 3~a!#. These minima are caused b
multiple reflections inside single layers. Increasing the s
tem length enhances the effective reflection and the g
become deeper~see below!. A second mimimum appear
near 9 GHz in the waveguide spectrum. It does not show
in a single-layer spectrum or in a real 3/4-wavelength wa
guide spectrum and corresponds to a half wavelength.
caused by multiple reflections between different layers an
is also observed at a similar position in the Fibonacci a
Thue-Morse spectra.

For a given system length the depth of the gaps diff
between Thue-Morse, Fibonacci, and periodic sequence~see
Figs. 2 and 3!:

tmin
Thue-Morse.tmin

Fibonacci.tmin
periodic. ~11!

This holds for the plane-wave dispersion as well as for
waveguide case. For a given sequence

tmin
plane wave.tmin

waveguide. ~12!
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FIG. 3. Transmission spectra for the waveguide dispersion of the elements shown in Fig. 2. Due to the altered dispersion re
l/4 condition Eq.~9! does not hold.
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Although the Thue-Morse systemT5
TM is actually longer than

the periodic and Fibonacci systems and the gaps bec
deeper with increasing system length~see below!, relation
~11! is observed. The more ordered the system is, the m
easily standing waves can build up in and between the la
and more clearly the coherent interference pattern emer
In this sense the Fibonacci sequence is more ordered tha
Thue-Morse sequence.

In order to point out this situation, let us consider a giv
sequence as one single layer of thicknessL having an effec-
tive wave vectorkeff . The transmission is very small in th
gaps and decreases with increasing system length. Abo
given thickness we can neglect multiple reflections betw
the front and the backside of the sequence. W
uau5uexp(2ikeffL)u!1 Eq. ~3! may be written as
S215 exp(2iw)5(12reff

2 )exp(2ikeffL) and thus in the gaps

ln~ tgap!5Im@keff#L1 lnu12r eff
2 u, ~13!

wgapmod 2p5Re@keff#L1w0 , ~14!

wherew0 denotes the phase shift due to the transitions at
front and the back of the sequence (tanw0

5Im@12r eff
2 #/Re@12r eff

2 #). Measured phase and amplitud
yield real and imaginary parts of the effective complex wa
number of the system. This is shown in Fig. 4 for the
bonacci sequence. For the calculation of the phase, multi
of 2p are added according to the numbern of 3

4l layers:
w5wcalc1Int@n 3

41
1
2]2p ~in the periodic case, for example

the phase difference between two consecutive elemen
exactly 3

2p). In fact, the above linear relations~13! and~14!
are observed at the gap frequencies. So the assumption
e

re
rs
es.
the

a
n
h

e

e
-
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is

f a

complex effective wave number independent ofL is correct.
In the gap regions the phase variationdw/dv is small ~see
Figs. 2 and 3! and below we shall show that the real part
keff does not contribute for long systems. The negat
imaginary part causes an exponential decay of the trans
ted amplitude with increasing system length. For an infin
systemt becomes zero and a completely forbidden band
is obtained. In the absence of dissipation~lossless material!
the decay@Eq. ~13!# is caused by a distributed quasitot
reflection along the system. This situation is similar to t
exponential decay of evanescent modes in unders

FIG. 4. Amplitude~filled symbols, lefty axis! and phase~open
symbols, righty axis! in the gaps of the Fibonacci sequence
system length~circles, plane-wave dispersion; triangles, wavegu
dispersion!. The linear dependence shows that the propagation
be described by a complex effective wave number@Eqs. ~13! and
~14!#.



d
u
ti
t
g

ri
a
t

g
t
th

n

e
id
ke

er

e

to

d
e
tain

of a

ide
ys-
cay
nce,
in-
are

per-
n
o a
-

his

the

a
In
ere
ch
has

en

to
et
ent
ve-
r

oe
r

55 7649PROPAGATION OF PLANE WAVES AND OF WAVEGUIDE . . .
waveguides, wherek is a pure imaginary quantity@Eq. ~1!
with (nc /n)

2.«m# @15–17#. However, in an undersize
waveguide the local and the effective wave number eq
each other, i.e., the system is homogeneous in the direc
of propagation. In our case the spectra are calculated by
superposition of transmitted and reflected waves of sin
layersA andB with the above specified localk numbers@Eq.
~1!#. Both the exponential decay and the small phase va
tion are the result of multiple reflections of oscillating prop
gating waves, i.e., an interference effect. For this reason
phase increases with increasing system length, i.e., Re@keff#
Þ0, in contrast to evanescent waveguide modes.

In order to measure the degree of order, i.e., the stren
of coherent interference, we compare the decay leng
ã521/Im@keff# of the sequences and average over
whole frequency period from 7.5 to 15 GHz. Thus Eq.~13!
becomes

^ ln~ t !&n52
1

a
L1const. ~15!

Although Eq.~15! resembles the definition of the localizatio
length j ~the constant is of the order of 0; see Fig. 5!, our
a values should not be confused with this quantity. In ord
to determine localization lengths, only frequencies outs
the forbidden gap of the periodic systems have to be ta
~and thus in the periodic casea5j5`, i.e., there is no
localization!. Here we are interested in the strength of coh
ent interference and thus also in the gap region.

The constant slope in Fig. 5 proves that Im@keff# is in fact
independent ofL for sufficient large system sizes. Inside th
gaps Eq.~15! holds without frequency averaging~see Fig. 4!.

FIG. 5. Frequency-averaged amplitude of the transmission c
ficient @see Eq.~15!# in semilogarithmic plot vs system length. Fo
the values of the decay lengths see Table I.
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Outside the gapst is close to unity and does not contribute
^ ln(t)&n . The deeper the gaps become@small t, large
2 ln(t)], the morea should decrease@Eq. ~15!#. Thus the
averaged decay lengtha is sensitive to both the number an
the depth of gaps. From Eq.~11! we expect to observe th
slowest decay for the Thue-Morse system. In fact, we ob
~Fig. 5 and Table I!

~aThue-Morse.aFibonacci.aperiodic!plane wave

.~aThue-Morse.aFibonacci.aperiodic!waveguide.

~16!

Table I also shows the respective decay lengths in units
building block: 3lPW/45A«ada5db . The largest decay
length corresponds to 19 building blocks~plane wave, Thue-
Morse! and the smallest to about 9 building blocks~wave-
guide, periodic!.

The negative interference due to multiple reflection ins
and between the layers is most effective for a periodic s
tem creating very deep gaps and thus a very small de
length. Increasing disorder disturbs the coherent interfere
the gaps become more shallow, and the decay length
creases. The decay lengths of the waveguide systems
smaller due to additional gaps caused by the altered dis
sion relation~Figs. 2 and 3!. However, one should keep i
mind that the waveguide case does not correspond t
quarter-wavelength system~as we shall see below, a wave
guide l/4 system exhibitsa values similar to those of the
plane-wave case!. Carpenaet al. @18# used ^t2&n and thus
they got the inverse relation for the decay lengths. But in t
case mainly frequencies outside the gaps (0!t.1) contrib-
ute to the average decay length (^t2& is a measure for the
number of gaps; the depth gives no contribution when
system is sufficiently long!.

B. Barrier traverse: Delay times and velocities

Periodic and quasiperiodic dielectric sequences form
potential barrier in which the wave decays exponentially.
addition, the frequency variation is very small and thus th
is no ordinary propagating mode. The question of how mu
time a wave or a particle requires to traverse a barrier
attracted much interest~see @19–21# and references cited
therein!, especially since superluminal velocities have be
observed in undersized waveguides@15–17,22# or in peri-
odic dielectric heterostructures@23,24#. It is still an open
question which definition of the delay time corresponds
the tunneling time of a photon or of a wave pack
@19,20,25#, i.e., the time for the traverse of an evanesc
region. For example, the usual definition of the energy
locity vE5uPu/w via the time-averaged Poynting vecto

f-
dic
TABLE I. Decay lengths of different systems@see Fig. 5 and Eq.~15!#. The lengths in units of a
3/4-wavelength building block 3l/45A«ada refer to the center wavelength of the spectra.

Plane wave Waveguide
Decay length Thue-Morse Fibonacci Periodic Thue-Morse Fibonacci Perio

a ~mm! 383 308 256 246 207 176
a/(3l/4) 19.15 15.40 12.80 12.30 10.35 8.80
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P̄5Re@Ē3H̄* # and energy densityw does only apply for the
propagation in a medium without any reflections at int
faces. At an interface incoming (Ei ,Hi) and reflected
(rEi ,2rH i) waves are superposed and the effective Po
ting vector becomesPeff5Pi1Prefl5(12ur u2)Pi ~note that
the sign ofPi and Prefl differs! and weff5(11ur u2)wi . A
calculation on the basis of the total electric and magn
fields would average the velocities of incoming and reflec
wave:

vE
eff5

12ur u2

11ur u2vE
i 5

vE
i 2ur u2vE

refl

11ur u2
. ~17!

This value is smaller thanvE
i , the energy velocity of the

wave propagating forward. For example, at the open end
coaxial cable nearly the whole wave is reflected (r→1 for
low frequencies! sinceE→2Ei andH→0. SovE

eff becomes
very small, but of course it cannot be assigned to the sm
amount of energy radiated from the open end into space.
exponential decay associated with the tunneling problem
responds to a distributed reflection~see above!. Inside the
barrier the incoming and all the reflected waves are su
posed. Thus a calculation of the local field distribution in t
barrier cannot yield the energy velocity of the transmitt
wave ~taking the Poynting vector behind the barrier wou
yield the normal energy velocity in free space or in a wa
guide, respectively, which does not characterize the barr!.
The waves before and behind the barrier have to be c
pared, i.e., in the frequency domain via transmission coe
cients or via an equivalent Fourier transform into the tim
domain.

In general, the propagation of a wave packet in a med
without dispersion can be characterized by its phase time~or
group delay!

tw5dw/dv, ~18!

wherew5Re@k#L. Later we shall be able to seperate boun
ary effects.A priori this is impossible and we have to cha
acterize the whole barrier by rewriting Eq.~14! as
wgap5krL, with kr5Re@keff#1kb (kb5w0 /L is the contribu-
tion of the boundaries at the front and at the back!. The
complex wave vector associated with the tunneling prob
usually shows a strong dispersionk(v). This may cause re
shaping of the incoming wave packet, an effect that depe
on its frequency bandwidth, and thus alters the movemen
the center of gravity or of the maximum. The phase tim
approach is correct as long as two assumptions are fulfil
~i! The disperionv(kr) can be expanded around the cen
value of the wave packetk0, i.e., v(kr)5v01(dv/
dkr)0(kr2k0)1 . . . , and theamplitude of the contributing
frequencies is fairly sharply peaked aroundk0 so that higher
terms of the above Taylor expansion can be neglected@26#
and ~ii ! the frequency dependence of the imaginary part
the wave vector is sufficiently small so that the amplitude
the frequency componentst5exp$Im@k(v)#L% is scarcely
affected~see below!. In this case the pulse travels along u
distorted in shape with the group velocity

vgr5
dv

dkr
U
0
5
L

tw
~19!
-

-

ic
d

a

ll
he
r-

r-

-
r
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-

m

-

ds
of
e
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r

f
f

As long as the pulse remains undistorted ‘‘the transport
energy occurs with the group velocity’’@26#. The group ve-
locity describes the propagation of the center of gravity a
entirely characterizes the transmitted wave packet. At an
tical resonance frequency in the range of anomalous dis
sion, for example, the above conditions may not hold@26#.
Reshaping occurs and calculated negative or superlum
group velocities have no physical meaning. Using undersi
waveguides, Enders and Nimtz@15# have pointed out that for
narrow-band frequency limited wave packets (uDkuL,1)
traversing opaque (ukuL.1) evanescent regions the puls
reshaping can be neglected. The experiments in both the
and the frequency domain@Eq. ~19! or via Fourier transform#
yielded superluminal velocities@15,16,22,27#. In order to
check whether the phase time approach is correct for
systems studied we display the plane-wave dispers
n(kr) for the Fibonacci elementF9 near 10.5 GHz, where
the frequency variation reaches its maximum value@Fig.
6~a!#. In a frequency band of about 0.3 GHz the abov
mentioned linear expansion is valid. Due to the frequen
dependence of Im@k# the bandwidth has to be restricted
0.02 GHz in order to ensure a maximum deviation
610% between the amplitudes@see Fig. 6~b!#. Thus the
phase time approach is correct for a bandwidth
Dn/n50.19%. For the periodic structureP50 the maximum
of vgr and the minimum oft occur at the same frequency an

FIG. 6. ~a! Plane-wave dispersionn(kr) for the Fibonacci ele-
mentF9 in the gap region. The dashed line shows the validity of
first-order Tayler expansion at 10.5 GHz.~b! Amplitude of the
transmission coefficient vs frequency near 10.5 GHz, showing
dispersion due to the imaginary part of the wave number.
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FIG. 7. ~a! and ~b! Phase time and~c! optical analogue of the Bu¨ttiker-Landauer tunneling time@Eq. ~20!# vs frequency in a semiloga
rithmic plot for the Fibonacci elementF9.
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a bandwidth of 0.175 GHz, i.e.,Dn/n51.56% is possible. In
the following we restrict ourselfs to band limited wave pac
ets showing no reshaping effects so that the group velo
equals the energy velocity. Due to the finite bandwidth,
width of the wave packet in space is large. For the rms
viation of the average valueDxDk>0.5 holds@26#. For the
plane-wave dispersion (Dk5Dv/c outside the barrier! of
the Fibonacci elementF9 we obtainDx>1.19 m, compared
to a barrier length of 0.76 m (Dx>0.136 m forP50). More-
over, the finite frequency range corresponds to an infin
extension in space or in time. The discussion whether s
wave packets model the wave function of single photons
electrons or whether they might be interpreted as signals
beyond the scope of this paper and we refer to Ref.@27#.

Another approach for the barrier traverse is the opti
analog of the Bu¨ttiker-Landauer tunneling time@28,29#, re-
written for electromagnetic waves and based on Faraday
tation @30#

tBL5AS tw1
Im@S111S22#

4v D 21S dlntdv
1
Re@S111S22#

4v D 2.
~20!

The reflection coefficientsS11 andS22 take into account the
particular features of the shape of the barrier~for a symmet-
ric oneS115S22) and become important at low frequenci
and/or for short barriers@31#. For photons, the term in th
first set of parentheses in Eq.~20! is proportional to the Far-
aday rotation or the density of optical modes, while the te
in the second set of parentheses is proportional to the de
of ellipticity or to the radius of localization@30#. In contrast
to the phase time, fortBL the change of both the phase a
the amplitude has to be taken into account. Note that e
for very-narrow-band wave packets showing no reshap
effects in the time domain, the termdlnt/dv in Eq. ~20!
yields a time that is, in general, larger than the phase time
this casetBL does not correspond either to the delay of t
center of gravity or to the delay of the maximum, and
physical interpretation becomes difficult.

In order to discuss the behavior of the periodic and q
siperiodic sequences we start withtw @Eq. ~18!#. In the gap
regions the phase changes only slowly with frequency~Figs.
-
ty
e
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e
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ee
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In

-

2 and 3! and the phase time becomes small@see Figs. 7~a!
and 7~b!#. Above a certain system size,tw becomes quas
independent of the length, i.e., it alternates between two
tinct valuest1 andt2 ~see Fig. 8!: for the plane-wave case
for example, betweent152310210 s andt251.33310210

s ~periodic!, between t152.04310210 s and t253.34
310210 s ~Fibonacci!, and betweent152.38310210 s and
t253.28310210 s ~Thue-Morse!. For the waveguide similar
values are obtained~see Table II!. Thus, increasing disorde
enhances the minimum phase time. The fact that (tw)min al-
ternates between two distinct values is due to an additio
phase variation in every second element. For the perio
case, for example, every odd element is obtained from
previous even one by adding a nonreflecting air layer. T
results in an additional phasew15kbdb , and thus in the
plane-wave casedw1 /dv5db /c5 2

3310210 s5t12t2 ~see
above!. Adding the next layerA reestablishes the startin
point, i.e., the sequence is terminated by a reflecting la
Considering a sequence as an effective syst
wgap5Re@keff#L1w0 @see Eq.~14!#. w0 describes the phas
shift due to the transitions at the front and the back of
system and thus also comprises the above variation ofw1 .

FIG. 8. Minimum phase times vs system length for the pla
wave case. Similar curves are obtained for the waveguide dis
sion.
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TABLE II. Minimum values of the phase timetw and of the optical analog of the Bu¨ttiker-Landauer
tunneling timetBL @see Eq.~20!#. These values are obtained in the gaps. Above a given system lengt
t values of a sequence alternate between two values; see Fig. 8.

Plane wave Waveguide
Sequence (tw)min (10

210 s) (tBL)min (10
210 s) (tw)min (10

210 s) (tBL)min (10
210 s)

periodicP50 1.334 1.337 1.195 1.226
P49 2.001 2.001 1.984 2.023
FibonacciF9 2.041 2.281 1.599 1.881
F8 3.341 3.403 2.742 2.775
Thue-MorseT5 2.378 2.423 1.808 1.899
T4 3.284 3.285 3.433 3.432
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Obviously the real part of the effective wave number is co
stant~see Fig. 8! and thus

~tw!gap5
dw0

dv
,

i.e., only a nonoscillating effective evanescent mode ex
and the phase variation ofS21 is caused by the transitions an
is independent of the system length as in undersi
waveguides@17# ~the difference between real and effecti
evanescent modes has already been pointed out above!. In
the gap regions the wave propagation is determined by
imaginary part ofkeff , which is independent ofL @see above
and Eqs.~13! and~14!#. In contrast, the phase time becom
very large at the edges of the gaps. This may be interpr
as a longer interaction and is caused by a shift of gap st
towards the edges. The density of states is@31#

N~n!5S ]w

]n
1
Im@S111S22#

4n D 1

hpL
~21!

(L is the system length andh is the Planck constant!. We do
not display the data since the shape of the curve resem
that of the phase timetw ~Fig. 7!. Even in the gap regions
wheredw/dn becomes small, the contribution of the ter
Im@S111S22#/4n is smaller than 2%. Outside the gaps it c
be neglected. Thus the phase time is proportional to the d
sity of states of electromagnetic modes in the system. It
produces the characteristic features of the one-dimensi
system, i.e.,dw/dv shows the Van Hove singularities at th
band edges@32#. In the forbidden gap the density of stat
becomes very small~it would become zero for an infinite
system! and so doesdw/dv.

Figure 7~c! displays the Bu¨ttiker-Landauer timetBL @Eq.
~20!# for the waveguide dispersion of the Fibonacci elem
F9. Compared to thetw curve @Fig. 7~b!#, the width of the
t gaps is decreased; however, similar minimum values
observed at the center frequencies of the gaps. The s
holds for the plane-wave disperion. A narrow-band f
quency limited wave packet with a center frequency at
gap minimum will not be distorted and its barrier traver
time is given bytw.tBL . Using the definition oftBL only
demands a more restricted frequency range to obtain
delay times for all frequency components. In Table II t
minimum values oftBL according to Eq.~20! are listed. It is
easy to understand why the values are close to those oftw .
-
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At the gap frequency where lnt is a minimumdlnt/dv50 and
thus Eq.~20! becomes (uS11u,uS22u<1)

~tBL!gap5Atw
21twIm@S111S22#/2vgap1S uS111S22u

4vgap
D 2
~22!

<tw1
1

2vgap
, ~23!

with (2vgap)
21!(tw)gap ~see Table II!. For the waveguide

dispersion the Fibonacci elementF9, for example, has a
minimum at ngap513.05 GHz ~see Fig. 3! and
(tw)min51.599310210 s @6.131021251/2vgap. The mini-
mum of tw is located atn0512.8 GHz~see Fig. 7!. How-
ever, the frequency difference is small an
tw(ngap).(tw)min and thus also (tBL)gap.(tBL)min , which is
listed in Table II. In the middle of the gaps the Bu¨ttiker-
Landauer time is just sligthly larger than the phase tim
which can be considered as the barrier traverse time.
both the plane-wave and the waveguide dispers
(tw)gap.(tBL)gap and these times are independent of t
length for larger system sizes. Increasing disorder, i
changing from spatial periodicity to quasiperiodic long-ran
order, results in highert values.

In an undersized waveguide@Eq. ~1! with (nc /n)
2.«m#

the Büttiker-Landauer time differs fromtw . The term
dlnt/dv gives a contribution proportional to the length of th
system. When the system is sufficiently long we can neg
multiple reflections and thus Eq.~13! yields

dlnt

dv
5

«m

A~nc /n!22«m

L

c

~assuming lossless material, i.e.,« andm are real quantities
only!. Thus tw,tBL , whereas for our quasiperiodic struc
turestw.tBL .

Since the gap times of periodic and quasiperiodic str
tures are independent ofL, superluminal velocitiesL/t are
obtained while at the edges very small values are obse
~for a measurement ofvgr.c in periodic systems see Re
@24#!. The group velocityvgr5L/tw is displayed in Fig. 9.
TakingL/tBL would yield nearly the same maximum value
but peaks of a reduced width. As a consequence of tht
plateaus shown in Fig. 8, the gap values of the group vel
ties increase with increasing system length~see Fig. 10!. The
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most ordered periodic structure exhibits the highest valu
As we have already pointed out, sufficient narrow-band w
packets centered around a gap frequency will not show
shaping effects. The transmitted wave packet will exhib
much smaller amplitude, but the same shape, and is cha
terized by a superluminal group velocity.

Also in waveguide experiments with evanescent mo
superluminal velocities have been observed@15,16#. How-
ever, in our case the small phase change of the transmis
coefficient is the result of multiple reflections of propagati
waves, i.e., an interference effect, resulting in a quasit

FIG. 9. Normalized group velocity vs frequency for the F
bonacci elementF9.

FIG. 10. Maximum values of the group velocity vs syste
length for the plane-wave case.
s.
e
e-
a
c-

s

ion

al

reflection. Thus real evanescent modes are not a neces
condition for superluminal group velocities; quasitotal r
flection is sufficient.

C. Scaling properties

Until now we have compared the behavior of plane-wa
and waveguide systems assembled from the same two b
ing blocks. Due to the different dispersion relations, only t
plane-wave systems were 3/4-wavelength systems. So le
compare two Fibonacci systems that fulfill the 3/
wavelength condition for the plane-wave and for the wa
guide case, respectively. We keep the above specified pa
eters for the plane-wave case. For the waveguide we o
change the permittivity of layerA from «a54 to
«a53.238. Thus Eq.~9! is fulfilled; the waveguide cente
frequency isncenter513.016 GHz instead of 11.242 GHz. I
Fig. 11 theF9 spectra are shown as a function of the no
malized frequencyn/ncenter. Due to the altered dispersio
relation, the waveguide spectra lose their symmetry far fr
ncenter; however, it is preserved nearncenter ~this is also true
for the periodic and the Thue-Morse sequences, which
not shown!. Thus quarter-wavelength systems show in pr
ciple a similar behavior for both dispersion relations. In p
ticular, nearly the same decay lengths~Fig. 5!, phase times
~Figs. 7 and 8!, and thus also density of states@Eq. ~21!# and
group velocities should be obtained for plane-wave a
waveguide systems. In the frequency range between the

FIG. 11. Transmission spectrum of the Fibonacci elementF9 vs
normalized frequency~3/4l systems!. Solid lines, plane wave;
dashed lines, waveguide. Between 20.5p and 33.5p phase plateaus
appear in steps ofp.
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FIG. 12. Fibonacci spectrum
F4 as well as scaled spectraF7

andF10 vs frequency for~a! plane
wave dispersion and~b! wave-
guide dispersion~3/4 l systems!.
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main gaps the phase plateaus appear in steps ofp at values
of (n11/2)p. ~In Ref. @33# the gaps are located at integ
values ofp; however, periodic boundary conditions ha
been used for the calculation.!

At ncenterthe transmission matrices of (2n11)3 l/4 lay-
ers have a periodicity of 6, i.e.,Ti165Ti @9#. The first two
elements of the Fibonacci sequence are the single-layer
trices T05Tb ~air! and T15Ta ~dielectric!. From Eqs.~3!,
~4!, and ~6! with a5exp(2ikd)5i(21)n11 ~in our case
n51) we obtain

T05 i ~21!nS 21 0

0 1D , T15 i ~21!naS 21 b

2b 1 D ,
where a5(11r 2)/(12r 2) and b52r /(11r 2). With
a2(12b2)51, Eq. ~8! yields, for the next elements,

T252aS 1 b

b 1 D ,
T35 i ~21!n11a2S 2~11b2! 2b

22b ~11b2!
D ,

T45T1 , T55aS 1 2b

2b 1 D .
SinceT65T5T45T0 andT75T6T55T1 the period of 6

is obvious. The amplitude of the transmission coefficie
t i5(1/T22) i of the first six elements are thust051,
t15t25t45t551/a, and t35a22/(11b2)5(12b2)/
a-

s

(11b2). Of course, this result does not depend on the disp
sion relation~1!. A periodicity of 3, i.e.,t i5t i13, holds for
i51 mod3 andi52 mod3, but is only approximately valid
for i50 mod3 in the case of weak reflectio
(«a /«b.1⇒r!1⇒a.1, b.0).

Now let us check the so-called scaling relation@9,34,35#,
which has been interpreted as a sign for quasilocalization
the states. The transmission coefficient should exhibit a s
similar behavior around the center frequency w
t i(nscaled).t i13(n), i.e., replacing the frequency axis of
spectrum bynscaled5(n2ncenter) f1ncenter should yield the
spectrum of a higher element. The~slightly-frequency-
dependent! scaling factor f is @34,35# f5A114(11I )2

12(11I ), with I5 1
4sin

2(kada)sin
2(kbdb)(A«a /«b

2A«b /«a)
2. For the center frequency of the plane-wa

spectrumI50.5625 and thusf56.4061; for the waveguide
I50.386 708 and thusf55.7216. Since the periodicity of 3
does not hold fori50 mod3, we chose the spectraF4, F7,
and F10 ~see Fig. 12!. The plane-wave and the waveguid
spectra show the same behavior. TheF4 andF10 curves re-
semble each other nearncenter, however,F7 differs. Once
again, the periodicity of 6, i.e., the scalin
t i(nscaled).t i16(n) with scaling factor f 2, is fulfilled,
whereas the numerically found scaling of 3~see Ref.@35#!
does not hold in general.

IV. CONCLUSION

In the photonic band gaps periodic and quasiperio
multilayer systems can be described by a complex effec
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wave number. Its negative imaginary part causes an ex
nential decay of the transmission coefficient with increas
system length:tgap5exp(Im@keff#L). Since only lossless ma
terials have been considered, the decay corresponds to a
tributed quasitotal reflection. The phasewgap5Re@keff#L
1w0 increases with increasing system length; however,
phase timestw5dw/dv are independent ofL for larger sys-
tem sizes, i.e.,dRe@keff#/dv50. tw only alternates betwee
two distinct values and roughly equals the Bu¨ttiker-Landauer
tunneling time. Thus superluminal group velocities are o
tained, characterizing the propagation of very-narrow-ba
wave packets.

The observed behavior calls to mind evanescent mode
undersized waveguides, wherek is a pure imaginary quan
tity. However, a multilayer system is not homogeneous in
direction of propagation due to different local wave numbe
The effective wave number results from multiple reflectio
of oscillating propagating waves, i.e., from an interferen
effect. For this reason the phase increases with increa
system length, i.e., Re@keff#Þ0, in contrast to evanescen
waveguide modes.

For both the plane-wave and the waveguide dispersion
most ordered structures exhibit the most effective cohe
interference and thus the deepest gaps in the transmis
n

tt.

or

as

ch
o-
g

is-

e

-
d

in

e
.
s
e
ng

e
nt
ion

spectra as well as the smallest decay len
a521/̂ Im@keff#&n . Thus the Thue-Morse sequence is le
ordered than the Fibonacci one, which in turn is, of cour
less ordered than the periodic system. Increasing diso
enhances the phase times, the Bu¨ttiker-Landauer times, and
the density of states in the gap regions. The group veloci
become smaller but remain superluminal.

Arranging the building blocks of a plane-wave quarte
wavelength system in a waveguide breaks thel/4 condition
due to the altered dispersion relation. The gaps beco
deeper, additional ones appear, and the averaged d
lengths decrease. Normalizing the frequency axis with reg
to the center frequency, the spectra ofl/4 systems are simi-
lar for both the plane-wave and the waveguide dispers
The Fibonacci scaling relation has been checked for b
dispersion relations. It holds for a periodicity of 6, where
the claimed@9,34,35# periodicity of 3 has been found to b
invalid in general.
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