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Propagation of plane waves and of waveguide modes in quasiperiodic dielectric heterostructures
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We study the propagation of electromagnetic waves in one-dimensional quasiperiodic systems and its dis-
persion relation for plane waves and for waveguide structures. In the photonic band gaps, periodic, Fibonacci,
and Thue-Morse multilayer systems can be described by a complex effective wave vector. Its negative imagi-
nary part causes an exponential decay of the transmission coefficient due to a distributed quasitotal reflection.
Its real part is independent of frequency, so that the phase time becomes independent of the system size. This
time alternates between two distinct values and approximately equals thikeBliandauer tunneling time.
Superluminal group velocities are obtained for the propagation of narrow frequency band wave packets. The
effective complex wave vector results from multiple reflections of oscillating propagating waves. For both the
plane wave and the waveguide dispersion the most ordered structures exhibit the most effective coherent
interference and thus the deepest gaps in the transmission spectra as well as the smallest decay length. The
Thue-Morse sequence is less ordered than the Fibonacci one, which in turn is less ordered than the periodic
system. Increasing disorder enhances the phase time, ttikeBd.andauer time, and the density of states in
the gap regions. The group velocity becomes smaller, but still remains superluminal. The specta of
systems are similar for both the plane-wave and the waveguide dispersion. The Fibonacci scaling relation has
been checked. It holds for a periodicity of 6, whereas the claimed periodicity of 3 has found to be not valid in
general [S1063-651X97)00506-0

PACS numbes): 42.70.Qs, 41.20.Jb, 42.25.Hz, 71.55.Jv

I. INTRODUCTION fers. Due to the boundary conditions, the propagation of the
guided wave is altered compared with a plane wave. The

A lot of work has been carried out to study energy spectralispersion relation of the wave vector changes and thus also
of quasiparticle$1—5], thermodynamic propertig$,7], and  the frequency spectra of the complex transmission and re-
electronic and electromagnetic wave propagati8rg] in  flection coefficients. In this work we study the consequences
one-dimensional quasiperiodic systems, e.g., in chains of twfr Thue-Morse, Fibonacci, and periodic systems. From the
building blocks alternating according to a Fibonacci or acomplex transmission coefficient quantities such as decay
Thue-Morse sequence. In this intermediate regime betweegngth, phase time, Btiker-Landauer tunneling time, den-
order and disorder also “band gaps” occur in the transmis-Sity of states, and group velocity are calculated, all of which
sion spectra analogous to periodic electronic structures. Thigflect the degree of order of the respective system. In the
absence of propagating modes is caused by coherent multipB&p regions the interaction time of a wave with the potential
scattering and interference of partial waves, i.e., it occurs oRarrier is of special interest. We discuss the question of how
a scale of the wavelength. While infinite periodic systemsmuch time tunneling takes and the superluminal barrier
exhibit complete photonic band gaps, positional disorder cretraverse involved.
ates pseudogaps of localized stdteG]. These are modified
in the intermediate quasiperiodic regime. For example, the |I. CALCULATION OF THE TRANSMISSION SPECTRA
scaling properties of self-similar quasiperiodic Fibonacci ) i ) )
spectra have been interpreted as a sign for quasilocalization IN @ rectangularH,, waveguide filled with a material
[8,9], i.e., the decay of the wave functions is less than expolComplex permittivitye and permeability.) propagates a
nential. Until now, as far as we know, mainly plane waves!E mode with wave number
have been considered. This case corresponds, for example, to
a light beam propagating through a dielectric multilayer sys- k= e — 2

4 = ) =—Jeu—(v.lv) (D)
tem. Another experimental realization might be a TE mode c
in a material-filled coaxial cable.

In telecommunication engineering waveguide structuregfor complexk the convention Ifk]<0 determines the sign
are important, e.g., for the transmission of microwave signalef the square rogt The dispersion relation differs from that
or for optical signals between integrated microchips on waof a plane wavd TEM mode by a nonvanishing cutoff fre-

guencyv, . For anX-band waveguidéwidth w=22.86 mm,
heighth=10.16 mm ».=c/2w=6.56 GHz.

*Electronic address: rolf@obelix.ph2.uni-koeln.de Consider a dielectric layer of thicknessand wave im-
"Present address: Departamento de Electronica y Tecnologia qeedance[11] Z,,=Zyuky/k (Z, and k, denote the wave
Computadores, Facultad de Ciencias, Universidad de Granadimpedance and wave number of the vacuum, respecjively
18071 Granada, Spain. Permanent address: Department of Physits,the case of normal incidence the complex reflection coef-

Yerevan State University, 375049, Yerevan, Armenia. ficient of a single interface igl1]
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=7 7y akglki 1’ @ 10gm(t)O )

Taking into account multiple reflections inside the layer, its
transmission coefficients for the respective direction of —0.4
propagation (2-1 or 1+2) are[11,12

-0.6t
(1-r?a
Sn=S1=7 7,7 3 -0.8 17
. . . . _ '] O L L
and the corresponding reflection coefficients 5 s 10 11 12 12
(1—a’)r v [GHz]
Su=Sp=7 77 4
wherea is defined as i
a=exp —ikd). (5) 1

Thus the same functional relationst8p(k,ko) holds for the
S parameters for both the plane wave and the waveguide
case.

In order to obtain thé& parameters of a multilayer system,
the transmission matrices of the individual layers have to be

calculated 13]: 8 glg 1|o 1‘1 1‘2 13

T —S11522/S0t S S11/Sn 5 v [GHz]
s 1Sy ©

The transmission matrix of the whole system is obtained b
multiplying the individual layer matrices

FIG. 1. Amplitude and phase of the transmission coefficient vs
};requency for the Fibonacci elemeRt in an X-band waveguide
(layer A: Plexiglas,d,=5.9 mm, ¢,=2.6; layer B: air,d,=9.5
mm). Solid lines, experiment; dashed lines, calculation.

Teys= H T, coefficient of the waveguide using a Hewlett Packard 8510 B
: network analyzer and a Through-Reflect-Line calibration

[14].

For coherent multiple scattering and thus for strong qua-

eriodicity the effective lengths of both layers should be a

multiple of a quarter wavelengf®], i.e.,

according to a chosen sequence. In the followingnd ¢
denote the amplitude and phase of the transmission coeffjsﬂIp
cient of the system:

Sr=1UT=texp(—ig). (7)

A
| - daeatta— (ve/ )=y epmn— (ve/v)?= 7 (2n+1)
We are going to compare three sequences consisting of two

building blocks with transmission matricds, andTy,: The ©)
periodic sequence (v.=0 for plane waves i.e., both layers have the same
hase lengthkd. Thus the center frequency of a transmission
To=Tai -1 Tar Taia=Ta Ty (To=Ta), epectrum 15 duency
the quasiperiodic Fibonacci sequence 1 \/((2n+ 1)C)2+ ) .
14 — 14
Tioa=Ti-Tior (To=Tp, T1=Ta), ®) N o atta 4d, ¢
and the quasiperiodic Thue-Morse sequence and its  corresponding frequency  period is
[Veene2N/(2n+1) ,veenef2n+2)/(2n+1)]. In order to
Tic=Ti-TF (To=Ta Typ) compare the plane-wave and the waveguide spectra, the ma-

terial parameterg and u, the layer thickness, and the fre-
(with T; being the complement of;, i.e., having inter- quency range have to be chosen with respect to the following
changed building block#\ and B). As a test we compare points: (a) The calculation of transmission matrices is only
calculated and measured waveguide spectra of the Fibonagedbssible above the cutoff frequency of the feeding wave-
elementFs, i.e., ABAABABA in Fig. 1. MaterialA was a  guide, i.e., in our case the empKrband waveguide with
Plexiglas layer §,=5.9 mm,s,=2.6), whereas layeB was  v.=6.56 GHz, andb) the frequency period of the spectra
air (dp,=9.5 mm,e=1). We have measured the transmissionshould not be too large since the transmission spectra for
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FIG. 2. Transmission coefficient vs frequency for the plane-wave disper@pmeriodic elementPs, (L=0.76 m, (b) Fibonacci
elementF4 (L=0.76 m, and(c) Thue-Morse element TM(L=0.96 m. At the center frequency E¢9) holds.

tional ones appear. This can be understood easily. Let us
consider the most simple spectrum, the periodic one. In the
case of lossless material and plane waves the reflection co-
efficient of a single interface is independent of frequency
[see Eq(2)] and minima in the transmission coefficient of a
single layer[Eq. (3)] only appear for expf 2kd)=1, i.e.,
the quarter-wavelength conditiof®) with n=1. Thus the
gap appears at the center frequefigy. (10) and Fig. 2a)].
For the waveguide dispersion relation the peak position
changes since Ed9) yields 11.7 GHz for layeA and 13
GHz for layerB. In fact, the main gap appears near the mean
value 12.35 GHZsee Fig. 83)]. These minima are caused by
These are 3/4-wavelength layers for a plane wawme=0) multiple reflections inside single_layers. Inc_:reasing the sys-
with a center frequency of 11.242 GHEq. (10) with tem length enhances the effective refle_ctl_on and the gaps
n=1] and a period of 7.495-14.989 GHz. Of course, arrangbecome deepefsee beloy. A second mimimum appears
ing the same layers in a waveguide does not yield a quartef€ar 9 GHz in the waveguide spectrum. It does not show up
wavelength systerfsee Eq/(9) with v,=6.56 GHZ and we ina single-layer spectrum or in a real 3/4-wavelength wave-
can expect deviations in the spectfd/e assume that also 9uide spectrum and corresponds to a half wavelength. It is
above 12.4 GHz only the dominahi, mode propagates in _caused by multiple refle(_:thns betv_v_een _d|fferent_ layers gnd it
the waveguide. This implies a perfect geometry of thelS also observed at a similar position in the Fibonacci and
multilayer system to avoid the excitation of higher mogles. Thue-Morse spectra. _
Figure 2 shows the transmission coefficient of the plane- FOr @ given system length the depth of the gaps differs
wave dispersion for elements of different sequences havingetween Thue-Morse, Fibonacci, and periodic sequésme
comparable lengths: the periodic elemdf (51 elements, Fi9s- 2 and 2
L=0.76 m, the Fibonacci eIemenTg (55 layers,L=0.76 Thue-Morse._ Fibonacci._periodic
m) and the Thue-Morse elemen}" (64 layersL. =0.96 m. Lrmin Lrnin T

Figure 3 displays the spectra of the same systetiys- (0 _ ) )
mm, &,=4, andd,=20 mm) for the waveguide dispersion. This holds for the plane-wave dispersion as well as for the

Due to the altered dispersion relation and since the quarte}Y@veguide case. For a given sequence
wavelength conditiori9) does not hold, the waveguide spec- plane wave. ;waveguide
tra lose their symmetry. The gaps become deeper and addi- thin S tmin .

plane waves and waveguide modes differ mainly ngaand
become similar at higher frequenciee Eq.(1)].

lll. RESULTS
A. Spectra and decay lengths

For the following calculations lay€F, is supposed to be
a nonmagnetic 4,=1) loss-free dielectric material and
layer T,, corresponds to aire,= up=1). First we choose

d,=10 mm, e,=4-i0, dy,=20 mm.

(11)

(12
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FIG. 3. Transmission spectra for the waveguide dispersion of the elements shown in Fig. 2. Due to the altered dispersion relation the
N4 condition Eq.(9) does not hold.

Although the Thue-Morse systel™ is actually longer than  complex effective wave number independent.ak correct.
the periodic and Fibonacci systems and the gaps beconis the gap regions the phase variatiop/dw is small (see
deeper with increasing system lengsee below, relation  Figs. 2 and Band below we shall show that the real part of
(11) is observed. The more ordered the system is, the morke; does not contribute for long systems. The negative
easily standing waves can build up in and between the layeighaginary part causes an exponential decay of the transmit-
and more clearly the coherent interference pattern emergetd amplitude with increasing system length. For an infinite
In this sense the Fibonacci sequence is more ordered than thgstemt becomes zero and a completely forbidden band gap
Thue-Morse sequence. is obtained. In the absence of dissipatitmssless material

In order to point out this situation, let us consider a giventhe decay[Eq. (13)] is caused by a distributed quasitotal
sequence as one single layer of thicknedsaving an effec- reflection along the system. This situation is similar to the
tive wave vectok.;. The transmission is very small in the exponential decay of evanescent modes in undersized
gaps and decreases with increasing system length. Above a
given thickness we can neglect multiple reflections between

the front and the backside of the sequence. With 1n(t)5 " v waveguide, 13.048 GHz _{ 150
ol e plane wave, 12.146 GHz

|a]=|expikesl)|<1 Eq. (3) may be written as
S)= exp(—igo)=(1—r§ﬁ)exp(—ikeﬁL) and thus in the gaps
-1 100

IN(tgap = IM[Ker]L +In|1—rZq, (13 ol

®gap Mod 277 =Re Keg] L + o, (14 —15 } 1 99
wherep, denotes the phase shift due to the transitions at the —207¢
front and the back of the sequence (@gn o5 L ‘ . . . 10
=Im[1-rZ]/Rg1-r%]). Measured phase and amplitude 0 250 500 750 1000 1250

yield real and imaginary parts of the effective complex wave L [mm]

number of the system. This is shown in Fig. 4 for the Fi-

bonacci sequence. For the calculation of the phase, multiples g, 4. amplitude(filled symbols, lefty axis) and phaséopen

of 2 are added according to the numbemf i\ layers:  sympols, righty axis in the gaps of the Fibonacci sequence vs
©= @cact I N3+3]27 (in the periodic case, for example, system lengtHcircles, plane-wave dispersion; triangles, waveguide
the phase difference between two consecutive elements igspersion. The linear dependence shows that the propagation can
exactly 37r). In fact, the above linear relatiori$3) and(14)  be described by a complex effective wave numfigs. (13) and

are observed at the gap frequencies. So the assumption of(&4)].
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< In(t) > Outside the gapsis close to unity and does not contribute to
Y : : : (In(¥)),. The deeper the gaps beconiemall t, large
ol plane wave v Thue—Morse | —In(t)], the more« should decreasgEq. (15)]. Thus the
: g;ﬁ?ﬁ;‘;‘” averaged decay length is sensitive to both the number and
-2} the depth of gaps. From E¢ll) we expect to observe the
slowest decay for the Thue-Morse system. In fact, we obtain
4| (Fig. 5 and Table)l
gl o (aThue-Morsg aFibonacc'> aperiodic)plane wave
waveguide: v TbuefMorse Thue-Mors! Fibonacci periodi
_gl o Fibonacei >(a S a >a gwaveguide
a periodic
: : : : : (16)
0 500 1000 1500 2000
L [mm] Table | also shows the respective decay lengths in units of a

building block: 3\py/4=e,d,=d,. The largest decay
FIG. 5. Frequency-averaged amplitude of the transmission coei’-ength corresponds to 19 building bIoc({.ﬂa_ne wave, Thue-
ficient [see Eq{(15)] in semilogarithmic plot vs system length. For Morse and the smallest to about 9 building blocksave-
the values of the decay lengths see Table I. guide, periodig.

The negative interference due to multiple reflection inside
waveguides, wheré is a pure imaginary quantityEq. (1) and betwgen the layers is most effective for a periodic sys-
with (vo/v)?>ep] [15-17. However, in an undersized tem creating very Qeep gaps and thus a very §mal| decay
waveguide the local and the effective wave number equalpngth. Increasing disorder disturbs the coherent mterferenc;e,
each other, i.e., the system is homogeneous in the directidf® 9aps become more shallow, and the decay length in-
of propagation. In our case the spectra are calculated by tHg€ases. The decay lengths of the waveguide systems are
superposition of transmitted and reflected waves of singiémaller due to additional gaps caused by the altered disper-
layersA andB with the above specified lockinumberdEq. ~ Sion relation(Figs. 2 and ® However, one should keep in
(1)]. Both the exponential decay and the small phase varighind that the waveguide case does not correspond to a
tion are the result of multiple reflections of oscillating propa-duarter-wavelength systefas we shall see below, a wave-
gating waves, i.e., an interference effect. For this reason th@uide A /4 system exhibitsx values similar 0 those of the
phase increases with increasing system length, i.dkJjge Plane-wave cage Carpenaet al. [18] used(t%), and thus
#0, in contrast to evanescent waveguide modes. they got f[he inverse rglatlon f(_)r the decay lengths. But_|n this

In order to measure the degree of order, i.e., the strength2S€ mainly frequencies outside the gaps{6-1) contrib-
of coherent interference, we compare the decay lengthdte to the average decay lengtt%) is a measure for the
@=—1/Im[ke] of the sequences and average over thenumber.of gaps; the depth gives no contribution when the
whole frequency period from 7.5 to 15 GHz. Thus Ef@)  System is sufficiently long
becomes
B. Barrier traverse: Delay times and velocities

(In(t)y,=— £L+const. (15) Per!odic apd 'quasi'periodic dielectric sequences.form a
a potential barrier in which the wave decays exponentially. In
addition, the frequency variation is very small and thus there
Although Eq.(15) resembles the definition of the localization is no ordinary propagating mode. The question of how much
length ¢ (the constant is of the order of 0; see Fig, ur  time a wave or a patrticle requires to traverse a barrier has
a values should not be confused with this quantity. In orderattracted much interedisee[19-21 and references cited
to determine localization lengths, only frequencies outsidehereir), especially since superluminal velocities have been
the forbidden gap of the periodic systems have to be takenbserved in undersized waveguidd$-17,22 or in peri-
(and thus in the periodic case=¢=<, i.e., there is no odic dielectric heterostructurd®3,24. It is still an open
localization. Here we are interested in the strength of coher-question which definition of the delay time corresponds to
ent interference and thus also in the gap region. the tunneling time of a photon or of a wave packet
The constant slope in Fig. 5 proves thaf kgy] is in fact  [19,20,28, i.e., the time for the traverse of an evanescent
independent of. for sufficient large system sizes. Inside the region. For example, the usual definition of the energy ve-
gaps Eq(15) holds without frequency averagirigee Fig. 4. locity vg=|P|/w via the time-averaged Poynting vector

TABLE I. Decay lengths of different systenfsee Fig. 5 and Eq(15)]. The lengths in units of a
3/4-wavelength building block /4= \/s—ada refer to the center wavelength of the spectra.

Plane wave Waveguide
Decay length Thue-Morse Fibonacci Periodic Thue-Morse Fibonacci Periodic
a (mm) 383 308 256 246 207 176

al(3\/4) 19.15 15.40 12.80 12.30 10.35 8.80
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P=RgEXH*] and energy densityw does only apply for the 11.0 . . , T
propagation in a medium without any reflections at inter- [
faces. At an interface incomingE(,H) and reflected v [GHz] |
(rE',—rH'") waves are superposed and the effective Poyn-
ting vector become®®™=P'+ P'®=(1—|r|®)P' (note that
the sign of P' and P™" differs) and w®=(1+|r|?)w;. A
calculation on the basis of the total electric and magnetic I
fields would average the velocities of incoming and reflected 10.0
wave:

10.5 Av=0.3 GHz 1 b

2 i 2 refl
Ugf%+|r|zuiE:vE1 rlevg! - S
I *Irl 81 82 83 84 85
This value is smaller tham}, the ener loci a) k = !
Es gy velocity of the =¢/L [m ]
wave propagating forward. For example, at the open end of a 0.00006
coaxial cable nearly the whole wave is reflected~1 for
low frequenciessinceE—2E' andH—0. SovE" becomes
very small, but of course it cannot be assigned to the small t
amount of energy radiated from the open end into space. The 0.00004 t +10%7
exponential decay associated with the tunneling problem cor-
responds to a distributed reflectidgeee above Inside the t ~10%
barrier the incoming and all the reflected waves are super- 0
posed. Thus a calculation of the local field distribution in the
barrier cannot yield the energy velocity of the transmitted ] -—
wave (taking the Poynting vector behind the barrier would Av=0.02 GHz
yield the normal energy velocity in free space or in a wave- 0.00000 b ! ‘
guide, respectively, which does not characterize the barrier b 10.45 10.50 10.55
The waves before and behind the barrier have to be com- ) v [GHZ]
pared, i.e., in the frequency domain via transmission coeffi-
cients or via an equivalent Fourier transform into the time FIG. 6. (a) Plane-wave dispersion(k,) for the Fibonacci ele-
domain. mentF4 in the gap region. The dashed line shows the validity of the
In general, the propagation of a wave packet in a mediunfirst-order Tayler expansion at 10.5 GH@) Amplitude of the

without dispersion can be characterized by its phase tone transmission coefficient vs frequency near 10.5 GHz, showing the
group delay dispersion due to the imaginary part of the wave number.

0.00002 ¢ .

T,=d¢/dw, (18 As long as the pulse remains undistorted “the transport of
energy occurs with the group velocityf26]. The group ve-
whereo=Rek]L. Later we shall be able to seperate bound-j,ity describes the propagation of the center of gravity and
ary effects.A priori this is impossible and we have to char- gpire|y characterizes the transmitted wave packet. At an op-
acterize the whole barrier by rewriting EQ14) as  icq) resonance frequency in the range of anomalous disper-
Pgap= KiL, With k= Ref K] + kpy (kp=¢o/L is the contribu-  gjon “tor example, the above conditions may not Hal].
tion of the boundaries at the front and at the hadkhe  Reshaping occurs and calculated negative or superluminal
complex wave vector associated with the tunneling probleny .o, velocities have no physical meaning. Using undersized
usually shows a strong dispersi&(w). This may cause re- ayeguides, Enders and Ninftz5] have pointed out that for
sha@pmg of the incoming wave packet, an effect that dependsrrow-band frequency limited wave packefs\K|L<1)
on its frequency bandW|dth, and thus_ alters the movement chraversing opaque|K|L>1) evanescent regions the pulse
the center of gravity or of the maximum. The phase time eshaning can be neglected. The experiments in both the time
approach is correct as long as two assumptions are fulfilled;,§ the frequency domajieq. (19) or via Fourier transforh
(i) The disperionw(k;) can be expanded around the centeryje|qed superluminal velocitiefl5,16,22,27. In order to
value of the wave packeko, ie., w(k)=wot(do/  check whether the phase time approach is correct for the
dk)o(ki—ko)+ ..., and theamplitude of the contributing  gystems studied we display the plane-wave dispersion
frequencies is fairly sharply peaked arouggso that higher (k) for the Fibonacci elemerfy near 10.5 GHz, where
terms of the above Taylor expansion can be neglef26{l  he frequency variation reaches its maximum valéég.
and (ii) the frequency dependence of the imaginary part °f6(a)]. In a frequency band of about 0.3 GHz the above-
the wave vector is sufficiently small so that the amplitude of,entioned linear expansion is valid. Due to the frequency
the frequency components=exp{im[k(w)]L} is scarcely gependence of Ifik] the bandwidth has to be restricted to
affected(see below. In this case the pulse travels along un-gq 0> GHz in order to ensure a maximum deviation of
distorted in shape with the group velocity +10% between the amplituddsee Fig. ®)]. Thus the
de L phase time approach is correct for a bandwidth of
Vg=Tr | =— (19 Av/v=0.19%. For the periodic structufes, the maximum
dk o 7 of vy and the minimum of occur at the same frequency and
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FIG. 7. (a) and(b) Phase time an¢t) optical analogue of the Btiker-Landauer tunneling timgEg. (20)] vs frequency in a semiloga-
rithmic plot for the Fibonacci elemeifiy.

a bandwidth of 0.175 GHz, i.eAv/v=1.56% is possible. In 2 and 3 and the phase time becomes snjabe Figs. @)
the following we restrict ourselfs to band limited wave pack-and 1b)]. Above a certain system size, becomes quasi
ets showing no reshaping effects so that the group velocitindependent of the length, i.e., it alternates between two dis-
equals the energy velocity. Due to the finite bandwidth, thdinct valuesr; and 7, (see Fig. & for the plane-wave case,
width of the wave packet in space is large. For the rms defor example, betweem; =2x10 % s and7,=1.33x 10" *°
viation of the average valuaxAk=0.5 holds[26]. For the s (periodig, between r;=2.04<10 ' s and 7,=3.34
plane-wave dispersionAk=Aw/c outside the barrierof <10 % s (Fibonacc), and betweenr;=2.38< 10 s and
the Fibonacci elemerft, we obtainAx=1.19 m, compared 7,=3.28x 10 '°s (Thue-Morsg. For the waveguide similar
to a barrier length of 0.76 mA(x=0.136 m forPs;). More-  values are obtaineee Table Ii. Thus, increasing disorder
over, the finite frequency range corresponds to an infinit&€nhances the minimum phase time. The fact thg) §, al-
extension in space or in time. The discussion whether sucternates between two distinct values is due to an additional
wave packets model the wave function of single photons ophase variation in every second element. For the periodic
electrons or whether they might be interpreted as signals liegase, for example, every odd element is obtained from the
beyond the scope of this paper and we refer to R&f]. previous even one by adding a nonreflecting air layer. This
Another approach for the barrier traverse is the opticaresults in an additional phasg, =k,d,, and thus in the
analog of the Bttiker-Landauer tunneling timg28,29, re-  plane-wave caség, /dw=d,/c=5x10" Vs=7—17,(see
written for electromagnetic waves and based on Faraday r@bove. Adding the next layelA reestablishes the starting
tation[30] point, i.e., the sequence is terminated by a reflecting layer.
Considering a sequence as an effective system,
\/ IM[S;;+S,]\2 (dint R S;;+S,]\° @ga= R KerIL + @0 [See Eq.(14)]. ¢, describes the phase
TBL™ <T¢+T> + (E+ 44 | - shift due to the transitions at the front and the back of the
(20) system and thus also comprises the above variatiop,of

The reflection coefficient§,; and S,, take into account the

particular features of the shape of the barffer a symmet- Ty [10 5]

ric one S;;=S,,) and become important at low frequencies 6 ~ : :

and/or for short barrier§31]. For photons, the term in the v Thue—Morse

first set of parentheses in E@QO) is proportional to the Far- S F1bqn§p c

aday rotation or the density of optical modes, while the term Pl ¢ periodic

in the second set of parentheses is proportional to the degree . -

of ellipticity or to the radius of localizatioh30]. In contrast Ity

to the phase time, forg, the change of both the phase and . v v
the amplitude has to be taken into account. Note that even 2 [ gtansabesssnsanssonsaman
for very-narrow-band wave packets showing no reshaping 1 [wentassanassasassassnanasss

effects in the time domain, the tergint/dw in Eg. (20) ¢

yields a time that is, in general, larger than the phase time. In 0 : - : :

this caserg, does not correspond either to the delay of the 0 200 400 600 800 1000
center of gravity or to the delay of the maximum, and a L [mm]

physical interpretation becomes difficult.

In order to discuss the behavior of the periodic and qua- FIG. 8. Minimum phase times vs system length for the plane-
siperiodic sequences we start with [Eq. (18)]. In the gap  wave case. Similar curves are obtained for the waveguide disper-
regions the phase changes only slowly with frequeittgs.  sion.
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TABLE II. Minimum values of the phase time, and of the optical analog of the Biker-Landauer
tunneling timerg, [see Eq.(20)]. These values are obtained in the gaps. Above a given system length the
7 values of a sequence alternate between two values; see Fig. 8.

Plane wave Waveguide
Sequence £min (1071°°8)  (7a)min (10719°8)  (7)min (1070 S) (7)) min (1070 5)
periodic Psq 1.334 1.337 1.195 1.226
Pus 2.001 2.001 1.984 2.023
FibonacciFg 2.041 2.281 1.599 1.881
Fg 3.341 3.403 2.742 2.775
Thue-MorseT 5 2.378 2.423 1.808 1.899
T, 3.284 3.285 3.433 3.432

Obviously the real part of the effective wave number is con-At the gap frequency wheretlis a minimumdIint/dw=0 and

stant(see Fig. 8 and thus thus Eq.(20) becomes [S,4],|S,,<1)
deg S+ 2
(TKP)QBD:E’ (TBL)gap: \/Ti"' T(plm[sll+ SZﬂlzwgap+ |le—522|)
gap
(22)
i.e., only a nonoscillating effective evanescent mode exists
and the phase variation 8 is caused by the transitions and _ 1
is independent of the system length as in undersized STet 2wgap (23

waveguided 17] (the difference between real and effective

evanescent modes has already been pointed out phlove with (2wgap)*1<(r¢)gap (see Table . For the waveguide
the gap regions the wave propagation is determined by thdispersion the Fibonacci elemehRt, for example, has a
imaginary part ok, Which is independent df [see above minimum at »g,,~=13.05 GHz (see Fig. 3 and
and Eqs(13) and(14)]. In contrast, the phase time becomes(7,)mis=1.599x 10" *° s >6.1x 10" **=1/2wy,,. The mini-
very large at the edges of the gaps. This may be interpretesium of 7, is located atvy=12.8 GHz(see Fig. 7. How-

as a longer interaction and is caused by a shift of gap statesrer, the frequency difference is small and

towards the edges. The density of stateg3iH To(Vgap = (74) min @nd thus alsog ) gag= (751 ) min, Which is
listed in Table Il. In the middle of the gaps the tBker-

de Im[S;1+Sy]) 1 Landauer time is just sligthly larger than the phase time,

N(v)= o T 4y harl (21 which can be considered as the barrier traverse time. For

both the plane-wave and the waveguide dispersion

(L is the system length ardis the Planck constantWe do  (7¢)gar=(78L)gap @nd these times are independent of the
not display the data since the shape of the curve resembld&&ngth for larger system sizes. Increasing disorder, i.e.,
that of the phase time,, (Fig. 7). Even in the gap regions, changing from_spa}tlal periodicity to quasiperiodic long-range
wherede/dr becomes small, the contribution of the term Order, results in higher values. , )
Im[ Sy1+ Sy,]/4v is smaller than 2%. Outside the gaps it can N @n undersized waveguid&q. (1) with (vc/v)*>epu]
be neglected. Thus the phase time is proportional to the defl€ Btiker-Landauer time differs fromr,. The term
sity of states of electromagnetic modes in the system. It redint/dw gives a contribution proportional to the length of the
produces the characteristic features of the one-dimensiondyStém. When the system is sufficiently long we can neglect
system, i.e.de/dw shows the Van Hove singularities at the Multiple reflections and thus E¢L3) yields
band edge$32]. In the forbidden gap the density of states
becomes very smallit would become zero for an infinite @: Ep E
system and so doeslp/dw. do N velv)2—ep €

Figure 7c) displays the Bttiker-Landauer timerg, [Eq.
(20)] for the waveguide dispersion of the Fibonacci elementassuming lossless material, i.e.and u are real quantities
Fo. Compared to ther, curve[Fig. 7(b)], the width of the only). Thus 7,<7g_ , whereas for our quasiperiodic struc-
T gaps is decreased; however, similar minimum values arturesr,=rg, .
observed at the center frequencies of the gaps. The same Since the gap times of periodic and quasiperiodic struc-
holds for the plane-wave disperion. A narrow-band fre-tures are independent &f, superluminal velocitie./r are
guency limited wave packet with a center frequency at theobtained while at the edges very small values are observed
gap minimum will not be distorted and its barrier traverse(for a measurement af ,,>c in periodic systems see Ref.
time is given byr,=7g . Using the definition ofrg_only  [24]). The group velocity 4=L/7, is displayed in Fig. 9.
demands a more restricted frequency range to obtain lowakingL/rg would yield nearly the same maximum values,
delay times for all frequency components. In Table Il thebut peaks of a reduced width. As a consequence ofrthe
minimum values ofrg; according to Eq(20) are listed. Itis  plateaus shown in Fig. 8, the gap values of the group veloci-
easy to understand why the values are close to thosg of ties increase with increasing system len@tee Fig. 10 The
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FIG. 9. Normalized group velocity vs frequency for the Fi-

bonacci elemenE. FIG. 11. Transmission spectrum of the Fibonacci elenrgnis

normalized frequency(3/4\ systemg Solid lines, plane wave;
dashed lines, waveguide. Between 20#&nd 33.5r phase plateaus
most ordered periodic structure exhibits the highest valuesppear in steps of-.

As we have already pointed out, sufficient narrow-band wave

packets centered around a gap frequency will not show rereflection. Thus real evanescent modes are not a necessary
shaping effects. The transmitted wave packet will exhibit acondition for superluminal group velocities; quasitotal re-
much smaller amplitude, but the same shape, and is charaffection is sufficient.

terized by a superluminal group velocity.

Also in waveguide experiments with evanescent modes
superluminal velocities have been obseryé8,16. How-
ever, in our case the small phase change of the transmission Until now we have compared the behavior of plane-wave
coefficient is the result of multiple reflections of propagating@nd waveguide systems assembled from the same two build-

waves, i.e., an interference effect, resulting in a quasitotand blocks. Due to the different dispersion relations, only the
plane-wave systems were 3/4-wavelength systems. So let us

compare two Fibonacci systems that fulfil the 3/4-
wavelength condition for the plane-wave and for the wave-

C. Scaling properties

10 . . . N
/c v Thue—Morse a guide case, respectively. We keep the above specified param-
8" g | * Fibonaccl a N eters for the plane-wave case. For the waveguide we only
» periodic L N change the permittivity of layerA from eg,=4 to
61 A L8 ] £,=3.238. Thus Eq(9) is fulfilled; the waveguide center
A L frequency isveenie= 13.016 GHz instead of 11.242 GHz. In
4l . - R a® "_ Fig. 11 theFq4 spectra are shown as a function of the nor-
A L2 malized frequencyw/veener Due to the altered dispersion
5 a, e | relation, the Wavgg_uide spectra lose their sym_metry far from
extv Veentenn NOWEVET, it IS preserved ne@gqne (this is also true
o for the periodic and the Thue-Morse sequences, which are
0 0 160 2('30 360 450 500 not shown. Thus quarter-wavelength systems show in prin-

ciple a similar behavior for both dispersion relations. In par-
L [mm] ticular, nearly the same decay lengitisg. 5), phase times
(Figs. 7 and 8 and thus also density of statg=g. (21)] and
FIG. 10. Maximum values of the group velocity vs system group velocities should be obtained for plane-wave and
length for the plane-wave case. waveguide systems. In the frequency range between the two
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main gaps the phase plateaus appear in steps afvalues

(1+8%). Of course, this result does not depend on the disper-

of (n+1/2)7. (In Ref. [33] the gaps are located at integer sion relation(1). A periodicity of 3, i.e.,tj=t; 3, holds for
values of 7; however, periodic boundary conditions havei=1 mod3 and =2 mod3, but is only approximately valid

been used for the calculation.

At veenerthe transmission matrices of §2- 1) X A4 lay-
ers have a periodicity of 6, i.eT;, =T, [9]. The first two

for i=0 mod3 in the case of weak reflection
(ealep=1=r<1=a=1, f=0).

Now let us check the so-called scaling relat[@n34,39,

elements of the Fibonacci sequence are the single-layer mahich has been interpreted as a sign for quasilocalization of

trices To=T, (air) and T;=T, (dielectrig. From Egs.(3),

(4), and (6) with a=exp(—ikd)=i(—1)"*! (in our case

n=1) we obtain
-1
0

— ,3)
_'3 1’

where a=(1+r?)/(1-r?) and B=2r/(1+r?). With
a?(1- B?) =1, Eq.(8) yields, for the next elements,

2 e
. Ti=i(-1D)"a

Tozi(—l)n( 1

1 B
T2=—a B 1 y
—(1+8% 2B
i n+1_2
R “(—23 (1+p))"
1 -8
T4:T1, T5=a(_’8 1 .

SinceTg=TsT,=Ty and T;=TgT5=T, the period of 6

the states. The transmission coefficient should exhibit a self-
similar behavior around the center frequency with
ti(vscaled =ti+3(v), i.e., replacing the frequency axis of a
spectrum byveged (Y= Veente) T+ Veenter ShoOuld yield the
spectrum of a higher element. Thelightly-frequency-
dependent scaling factorf is [34,35 f=1+4(1+1)?
+2(1+1), with | = 3sir(k,d,) sirf(kpdp) (Vea/ep
—Jeple,)?. For the center frequency of the plane-wave
spectruml =0.5625 and thug=6.4061; for the waveguide

I =0.386 708 and thu$=5.7216. Since the periodicity of 3
does not hold foii =0 mod3, we chose the spectra, F-,
and F,, (see Fig. 12 The plane-wave and the waveguide
spectra show the same behavior. TheandF 4 curves re-
semble each other neat..., however,F, differs. Once
again, the periodicity of 6, i.e., the scaling
ti(vscaled =ti+6(¥) Wwith scaling factor 2, is fulfilled,
whereas the numerically found scaling of(see Ref[35])
does not hold in general.

V. CONCLUSION

is obvious. The amplitude of the transmission coefficients

ti=(1/T2);

t1=t2=t4=t5=1/a, and t3=a72/(1+,32)=(1—,82)/

of the first six elements are thug=1,

In the photonic band gaps periodic and quasiperiodic
multilayer systems can be described by a complex effective
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wave number. Its negative imaginary part causes an expapectra as well as the smallest decay length
nential decay of the transmission coefficient with increasingex= — 1 Im[kqs]), . Thus the Thue-Morse sequence is less
system lengtht,,=exp(Infkex]L). Since only lossless ma- ordered than the Fibonacci one, which in turn is, of course,
terials have been considered, the decay corresponds to a disss ordered than the periodic system. Increasing disorder
tributed quasitotal reflection. The phasg,;— R Kek]L enhances the phase times, thétlBer-Landauer times, and
+ ¢, increases with increasing system length; however, théhe density of states in the gap regions. The group velocities
phase times,=d¢/dw are independent df for larger sys- become smaller but remain superluminal.
tem sizes, i.e.dRgke¢]/dw=0. 7, only alternates between Arranging the building blocks of a plane-wave quarter-
two distinct values and roughly equals thetfiker-Landauer  wavelength system in a waveguide breaks Xl condition
tunneling time. Thus superluminal group velocities are ob-due to the altered dispersion relation. The gaps become
tained, characterizing the propagation of very-narrow-bandleeper, additional ones appear, and the averaged decay
wave packets. lengths decrease. Normalizing the frequency axis with regard

The observed behavior calls to mind evanescent modes it® the center frequency, the spectranéd systems are simi-
undersized waveguides, whekeis a pure imaginary quan- lar for both the plane-wave and the waveguide dispersion.
tity. However, a multilayer system is not homogeneous in thelThe Fibonacci scaling relation has been checked for both
direction of propagation due to different local wave numbersdispersion relations. It holds for a periodicity of 6, whereas
The effective wave number results from multiple reflectionsthe claimed9,34,33 periodicity of 3 has been found to be
of oscillating propagating waves, i.e., from an interferencenvalid in general.
effect. For this reason the phase increases with increasing
system _Iength, i.e., Rk.s]#0, in contrast to evanescent ACKNOWLEDGMENTS
waveguide modes.
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